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INTRODUCTION

In this study we introduce a novel deep learning model 
for denoising spatial transcriptomics RNA sequencing 
data, leveraging the power of optimal transport and 
graph attention mechanisms. We called our model 
Graph Attention with Optimal Transport, Transformers 
and Time diffusion (1) (GO3T) which combines the 
mathematical accuracy of optimal transport to compute 
distance similarities with the dynamic learning 
capabilities of graph attention networks. This integration 
effectively mitigates noise and preserves spatial gene 
expression patterns. An overview of the architecture is 
represented in Figure 1.
To validate our model's performance, we conducted a 
comprehensive benchmark against state-of-the-art 
methods such as GraphST (2), SpaGCN (3), and 
STAGATE (4) as well as ScanPy (5). Our results 
demonstrate superior clustering metrics, highlighting the 
model's ability to maintain biological relevance.

METHODS

Experiments were tested using 12 samples from a Dorsolateral Prefrontal Cortex (DLPFC) dataset. 
Figure 2 compares different metrics for each of the samples used whereas Figure 3 represents the 
performance, using the same metrics, over all the datasets. Results show that our method is 
significantly more performant than other state-of-the-art methods. Our model achieves the highest 
Normalized (NMI) and Adjusted (AMI) Mutual Information, and that only for samples 151508 and 
151509 the Adjusted Rand Index (ARI) is lower than others.

RESULTS

Figure 4: spatial plots for the sample 151673 showing the ground truth regions along with the predicted ones for 4 
common methods and ours (GO3T).

Figure 5: spatial plots comparing 6 gene expression using scanpy (above) and our method GO3T (below) for denoising 
in the 151673 sample showing a better spatial organization of the different selected genes.

Figure 3: boxplots grouped by the three metrics used (ARI, NMI and 
AMI) for the 12 DLPFC samples along with the two-sided p-value 
obtained with t-test comparison between four common methods and 
ours (GO3T).

Figure 2: radarplots grouped by the three metrics used (ARI, NMI and AMI) for the 12 DLPFC samples using four 
common methods and ours (GO3T).
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Figure 1: Overview of GO3T architecture.

CONCLUSIONS

Our model GO3T is significantly more performant that 
current state-of-the-art models for denoising sp-RNA seq 
matrices. The current barrier can be set around ARI=0.6, 
which is still lower than what we would like but it already 
proves good performance for keeping layers or recover 
genes expressions.

FUTURE WORK

● Scalability of the model.
● Ablation study: to determine which layers of GO3T 

intervene the most for denoising the matrix.
● Cell deconvolution: to recover the type cells in the 

tissue.
● Analysis of a broad range of additional spatially resolved 

approaches (i.e. MERFISH, StereoSeq, etc) and further 
comparisons with additional methods.

● Analysis of various cancer datasets.

Figure 4 represents the ground truth along the raw and imputed matrices using different models and 
GO3T. We can visually verify that our model has a smoother imputation preserving the different cortex 
layers except for the outer one. Figure 5 shows the expression of different genes for the same 
dataset comparing the raw matrix with the one imputed by our method, visually proving that it 
accomplishes to denoise the data.


